Goto

Collaborating Authors

 McKinley County


An introduction to DSmT

arXiv.org Artificial Intelligence

The management and combination of uncertain, imprecise, fuzzy and even paradoxical or high conflicting sources of information has always been, and still remains today, of primal importance for the development of reliable modern information systems involving artificial reasoning. In this introduction, we present a survey of our recent theory of plausible and paradoxical reasoning, known as Dezert-Smarandache Theory (DSmT), developed for dealing with imprecise, uncertain and conflicting sources of information. We focus our presentation on the foundations of DSmT and on its most important rules of combination, rather than on browsing specific applications of DSmT available in literature. Several simple examples are given throughout this presentation to show the efficiency and the generality of this new approach.


N-norm and N-conorm in Neutrosophic Logic and Set, and the Neutrosophic Topologies

arXiv.org Artificial Intelligence

In this paper we present the N-norms/N-conorms in neutrosophic logic and set as extensions of T-norms/T-conorms in fuzzy logic and set. Also, as an extension of the Intuitionistic Fuzzy Topology we present the Neutrosophic Topologies.


n-ary Fuzzy Logic and Neutrosophic Logic Operators

arXiv.org Artificial Intelligence

We extend Knuth's 16 Boolean binary logic operators to fuzzy logic and neutrosophic logic binary operators. Then we generalize them to n-ary fuzzy logic and neutrosophic logic operators using the smarandache codification of the Venn diagram and a defined vector neutrosophic law. In such way, new operators in neutrosophic logic/set/probability are built.


Enrichment of Qualitative Beliefs for Reasoning under Uncertainty

arXiv.org Artificial Intelligence

This paper deals with enriched qualitative belief functions for reasoning under uncertainty and for combining information expressed in natural language through linguistic labels. In this work, two possible enrichments (quantitative and/or qualitative) of linguistic labels are considered and operators (addition, multiplication, division, etc) for dealing with them are proposed and explained. We denote them $qe$-operators, $qe$ standing for "qualitative-enriched" operators. These operators can be seen as a direct extension of the classical qualitative operators ($q$-operators) proposed recently in the Dezert-Smarandache Theory of plausible and paradoxist reasoning (DSmT). $q$-operators are also justified in details in this paper. The quantitative enrichment of linguistic label is a numerical supporting degree in $[0,\infty)$, while the qualitative enrichment takes its values in a finite ordered set of linguistic values. Quantitative enrichment is less precise than qualitative enrichment, but it is expected more close with what human experts can easily provide when expressing linguistic labels with supporting degrees. Two simple examples are given to show how the fusion of qualitative-enriched belief assignments can be done.


Qualitative Belief Conditioning Rules (QBCR)

arXiv.org Artificial Intelligence

In this paper we extend the new family of (quantitative) Belief Conditioning Rules (BCR) recently developed in the Dezert-Smarandache Theory (DSmT) to their qualitative counterpart for belief revision. Since the revision of quantitative as well as qualitative belief assignment given the occurrence of a new event (the conditioning constraint) can be done in many possible ways, we present here only what we consider as the most appealing Qualitative Belief Conditioning Rules (QBCR) which allow to revise the belief directly with words and linguistic labels and thus avoids the introduction of ad-hoc translations of quantitative beliefs into quantitative ones for solving the problem.